When the humans were evolving they didn’t know the art of agriculture. So they didn’t know to grow the edible plants. At this stage their diet was obtained from killing the animas. Thus their diet consisted mainly of fats and proteins. When agriculture was established, then humans added the carbohydrates into their food menu.
Carbs or Carbohydrates have become much maligned food from sometime. Many people say they are not good for health. These are mostly sugars. Sugars they say lead to diabetes, obesity and tooth decay.
Carbohydrates are one of the three essential categories of food along with fats and proteins. Carbohydrates provide energy to the body, fats also provide energy and fat and proteins build the bony structure of the body.
What are the carbohydrates?
Chemically carbohydrates are compounds made from Carbon, hydrogen and oxygen. There are many categories of the carbohydrates. Carbohydrates are synthesized in nature by plants and trees by a process called photosynthesis. This way they convert carbon dioxide and water into Glucose which is the starting material for making higher or complex carbohydrates like disaccharides, starches and cellulose. Human beings can’t digest cellulose.
Monosaccharides are the simplest sugars. Two of the most popular ones are Glucose and Fructose. Whereas Glucose contains only sugar, Fructose contains vitamins and minerals alongwith sugar. These are derived mostly from fruits. Thus Fructose are better than glucose.
Disaccharides
Disaccharide means their skeleton is made of two Glucose units. Examples are Sucrose, lactose and maltose.
Starches
Starches are very complex molecules made from large numbers of Glucose units joined together. These are obtained from grains like wheat, barley and maize etc. Due to their complex structure, they are slow to breakdown into human consumable monomers.
How Carbohydrates provide energy?
Carbohydrates are like fuel in a vehicle. Carbohydrates are oxidised by Oxygen we inhale. During oxidation energy is released alongwith water and carbondioxide which are exhaled and again caught by plants and trees for making sugars for themselves and humans and animals.
Why body prefers carbohydrates than fat?
Fat provides about thrice the energy than same amount of carbohydrate. Even then body prefers it especially for giving instant energy to the brain. The reason is the ease with which carbohydrates can be broken down into energy. Also the byproducts are easy to get rid by the body.
Complex carbohydrates like starch take much longer to get hydrolyzed. First of all when we eat them, an enzyme called Amylase which is present in our saliva catalysis the starch breakdown in the belly. Thus the breakdown is slow and not instant and sustained over a longer period of time thus providing lower but sustained amounts of energy.
So in the nutshell the whole foods grains are better and useful to be taken. Carbohydrates from these are not harmful but useful.
Banana is the most consumed fruit in the world. It is very easy to eat. Just peel and eat. It is an instant source of energy. Sportsmen love it. It can be eaten in the form of milkshakes or as such. It is any time fruit.
Banana and Plantains look very similar. But in fact they have some subtle differences which make them suitable for different food recipes. Nutritionally there is not much difference between them. Plantains grow in Central Africa, the Caribbean, and other tropical regions, and they’re commonly used in Latin, African, and Caribbean cuisine.
As the bananas and Plantains begin ripening their colours start changing from green to yellow to black. Sweetness also increases in the same way.
Plantains are longer in size than Bananas. A plantain is almost double (12″) as compared to a banana (about 6″). Plantains are used mostly as a vegetable rather than as a fruit. When raw, both bananas and Plantains are bland. Sweetness increases as they begin to mature. When fully ripe, Plantains are more sweeter than Bananas.
Sugar in the Plantains comes from starch. As starches take longer to breakdown into simple sugar they are initially less sweeter than Bananas. But since starches are complex sugars, they yield more simpler sugars.
Because ripe bananas are sweet, they are usually used in dessert recipes or baked goods, including banana bread, muffins, and cupcakes, often with chocolate chips thrown in. Chips are eaten as snacks.
Bananas are richer in many vitamins and minerals but due to their sugar base rather than starch base, user especially people with diabetes cannot overindulge in their consumption.
Nature is a great chemist. It is playing with chemical pigments to present vivid colors. Even a single leaf is a piece of art. There are many classes of pigments present inside it but their amount and times of breakdown and synthesis decides the resultant color.
The different colors are on display during autumn season. The leaves begin to look less and less green. They can take yellow, orange and red hues depending upon the ratios of the amounts of different pigments present in the leaves.
Most important pigment in the leaves is of course the chlorophyll. It is this pigment which imparts the green color to the leaf and helps in photosynthesis. It’s amount is dictated by the warmth and amount of sunlight the plant receives.
It’s presence is the indication that plant is alive and carrying out photosynthesis to convert carbondioxide and water into sugars and oxygen. Sugars contain energy from the sun which is harvested by tree or plant during photosynthesis.
What happens when it is not sunny. We see a kaleidoscope of different colors in leaves. There are yellow, orange and red hues. These colors are attributed to other pigments present inside the leaves. These were there throughout the life of the leaf but there colors were masked by the strong green color.
In the autumn, when sunlight is not available in plenty, the production of chlorophyll is halted. Chlorophyll present in the leaves begins to breakdown. At this time, color contribution from other pigments begin to show up.
Chlorophyll is a type of complex with Magnesium as the central metallic ion. There are 4 nitrogen atoms which are Lewis bases and thus trap the positively charged Magnesium ion. Chlorophyll is synthesized in the warm and sunny conditions by the plants.
It’s green color dominates the color in the leaves. During autumn, the sunlight is not fully available and hence the production of chlorophyll halts and since it is not required the already present chlorophyll in the leaves begins to breakdown and hence result is the decrease in green color of the leaves.
Carotenoids and flavonoids are the other pigments which are always present in the leaves but their color is masked by the green color of the chlorophyll.
When during autumn, the chlorophyll begins to breakdown, the color of these two classes of compounds begins to show up.
Xanthophylls which are oxygenated carotenoids are responsible for the yellow color of leaves. They do not require light for synthesis, so that xanthophylls are present in all young leaves as well as in etiolated leaves.
A class of carotenoids known as beta carotene is responsible for the orange color in leaves. It absorb light of green and blue wavelengths and reflects red and yellow wavelengths light thus causing the orange color in leaves during autumn.
Beta-carotene are also responsible for this color in carrots. They begin to degrade at the same time as chlorophyll but at a slower rate thus showing up the orange color gradually.
There is another class of compounds called anthocyanins which begins to get synthesized in the mature leaves due to the high amount of sugars in them. These are red in color. These are thought to prolong the falling of leaves.
According to Bob Drane, former vice president for new business strategy and development at Oscar Mayer, human brain craves for Sugar, Fat and Salt.
So food products which make use these ingredients help in gluing the customer and “Our limbic brains love sugar, fat, salt.… So formulate products to deliver these. Perhaps add low cost ingredients to boost profit margins.
Then “super size” to sell more.… And advertise/promote to lock in “heavy users.” —Bob Drane, former vice president for new business strategy and development at Oscar Mayer.
From this statement, it is clear that foods containing Sugar, Fat and Salt appeal most to the human brain. Armed with this knowledge, the fast food companies design feel good foods and hook so many of us, particularly, the younger generation.
It is the right combination of these that is important. The malaise of obesity is the result of those extra pounds generally come from the over consumption of soft drinks, snack foods, and fast foods.
Of course, the food companies do not want their customers obese because in that case they may start avoiding the fast food. But they want the “stomach share” in the food market.
But processed-food companies increasingly turn to their legions of scientists to produce foods that we can’t resist. These food geeks tweak their products by varying the levels of the three so-called pillar ingredients—salt, sugar, and fat.
Junk food
It turns out that although we generally do like such food more but after a certain intake, we like to take less. That optimum amount of salt, sugar, or fat is called the “Bliss Point”.
Scientists also adjust these ingredients as well as factors such as crunchiness to produce a mouth feel—that is, the way the food feels inside a person’s mouth—that causes consumers to crave more.
Technologists can also induce a flavor burst by altering the size and shape of the salt crystals themselves so that they basically assault the taste buds into submission.
The formula of successful junk-food science is the vanishing calorific density. Such food melts in your mouth so quickly that the brain is fooled into thinking it’s hardly consuming any calories at all, so it just keeps snacking.
In the process, packaged-food scientists want to avoid triggering sensory-specific satiety, the brain mechanism that tells you to stop eating when it has become overwhelmed by big, bold flavors.
Instead, the real goals are either passive overeating, which is the excessive eating of foods that are high in fat because the human body is slow to recognize the caloric content of rich foods, or auto-eating: that is, eating without thinking or without even being hungry. (The opposite problem is being overhungry, where you’re so ravenous that you’ll basically eat anything that’s put in front of you.)
Either way, if you end up with a food baby, a distended stomach caused by excessive overeating, you’ve made a fast-food executive somewhere very happy.
All this is explored by Pulitzer award winning Journalist Michael Moss in his book “Salt Sugar Fat: How the Food Companies Hooked Us”
Caramel is used in many recipes. It is prepared by heating the sugar and sugar becomes syrupy and turns brown and a mouth watering aroma is released.
Most people think that during heating the sugar, it melts and goes into a liquid state. But this is not true. There is chemistry behind this although no reactions really take place but there are phase changes. So physical chemistry is behind all this process.
Melting point of a substance is defined as that temperature at which the solid begins turning liquid. For pure substances consisting of single compounds this temperature is well defined and constant at atmospheric pressure. The one important condition for the well defined melting point definition is that the substance should not not breakdown during the melting. If there are impurities in the form of other substances and contaminants the melting point is not sharp and there is a range in which the whole process of melting takes place.
When sugar is heated to 160 degree centigrade, it turns into a colorless molten mass. In fact, the literature gives different melting points for the sugar. What happens is that during heating to 160 degree centigrade and further heat is supplied, temperature does not remain constant as should be the case.
Near this temperature the sugar molecules also begin to disintegrate and some lower molecular weight compounds are formed. On further heating by 10 to 20 degrees, caramalization begins and it starts to turn brown.
It has also been proved that caramelization is a function of both time and temperature as many other chemical reactions are. For example, the theory for conversion of deposited organic matter to the hydrocarbons is a function of time and temperature. The effect of time is linear and that of temperature is exponential. This is known as famous Arrhenius equation. In simple words, the temperature increase is ten times more effective than time passage.
So when the sugar temperature is raised above 160 degrees, depending on the time and temperature control, different colored crystals can be obtained. and thus can be achieved to different colors by adjusting the temperature and time of heating. The article material and photos are from “curious cook” website.
Sugar has become a dreaded word in the modern world. The term is used for the diabetes disease which is acquiring the epidemic proportions in the world. Although sugar alone cannot be blamed for this disease. Sugar is the major energy source along with fats on which our bodies run. Even the carbohydrates which we take in the form of bread and rice are ultimately broken down to simpler sucrose and then glucose compounds and are assimilated by our bodies. It is a matter of living style like stressful life, overeating and sedentary habits. So let us not blame sugar and know about it.
Sugar cane is a form of grass and the source of 70% of the world’s sugar which is extracted from the sweet, juicy stems. In many South Asian countries like India and Pakistan, when the stalks of sugarcane mature, they are chewed for their sugary syrup. The stalk is divided into pieces like the bamboo stalk and sweetness of the stalks decreases from bottom towards upper stalks. Of course, green portion at the top is only grassy. It is eaten as small pieces by the children.
This was the original use of sugar cane. Afterwards the sugar extraction processes began and it became the most important source of sugar followed by the beetroots and palms. The juice is extracted by pressing the sugarcane in a press consisting of rollers of steel and operated by bullocks or nowadays with engines. Area of West Maharashtra near Nashik are famous for the sugarcane production. Uttar Pradesh also produced lots of sugarcane. There are many mills for large scale production of sugar and molasses.
OLYMPUS DIGITAL CAMERA
Sugarcane originated in New Guinea where it has been known since about 6000 BC. From about 1000 BC its cultivation gradually spread along human migration routes to Southeast Asia and India and East into the Pacific. It is thought to have been hybridized with wild sugarcanes of India and China, to produce the ‘thin’ canes. It spread westwards to the Mediterranean between 600-1400 AD.
Arabs were responsible for much of its spread as they took it to Egypt around 640 AD, during their conquests. They carried it with them as they advanced around the Mediterranean. Sugarcane spread by this means to Syria, Cyprus, and Crete, eventually reaching Spain around 715 AD.
Around 1420 the Portuguese introduced sugar cane into Madeira, from where it soon reached the Canary Islands, the Azores, and West Africa. Columbus transported sugarcane from the Canary Islands to what is now the Dominican Republic in 1493. The crop was taken to Central and South America from the 1520s onwards, and later to the British and French West Indies.
Indian Subcontinent
Sugarcane has a very long history of cultivation in the Indian sub-continent. The earliest reference to it is in the Atharva Veda (c. 1500-800 BC) where it is called ikshu and mentioned as an offering in sacrificial rites. The Atharva Veda uses it as a symbol of sweet attractiveness.
The word ‘sugar’ is thought to derive from the ancient Sanskrit sharkara. By the 6th century BC sharkara was frequently referred to in Sanskrit texts which even distinguished superior and inferior varieties of sugarcane. The Susrutha Samhita listed 12 varieties; the best types were supposed to be the vamshika with thin reeds and the paundraka of Bengal. It was also being called guda, a term which is still used in India to denote jaggery. A Persian account from the 6th century BC gives the first account of solid sugar and describes it as coming from the Indus Valley. This early sugar would have resembled what is known as ‘raw’ sugar: Indian dark brown sugar or Gur.
At this time honey was the only sweetener in the countries beyond Asia and all visitors to India were much taken with the ‘reed which produced honey without bees’. The Greek historian Herodotus knew of the sugarcane in the 5th century BC and Alexander is said to have sent some home when he came to the Punjab region in 326 BC. Practically every traveler to India over the centuries mentions sugarcane; the Moroccan Ibn Battuta wrote of the sugarcanes of Kerala which excelled every other in the 14th century; Francois Bernier, in India from 1658-59, wrote of the extensive fields of sugarcane in Bengal.
Raw and refined sugars in simple terms are produced by heating, removing impurities and crystallizing sugar cane juice. Sucrose is the main constituent in this juice. Raw and refined sugars are exported all over the world for use in pretty much everything from sweet and savoury dishes to processed foods and drinks and preserving fruits and meat. These sugars are also compressed into sugar cubes or made into syrup. White sugar can be further processed into icing sugar to be used in desserts, baking and confectionery. It is a dark, syrupy product and is used for the preparation of edible syrups and for numerous industrial products. In Brazil alcohol is prepared from the sugarcane juice and is used as a fuel for the automobiles. Its end products after burning are carbondioxide and water which are completely pollution free.
As the sugar cane juice contains energy giving sugar as well many minerals, it is used in the treatment of certain illnesses. Both the roots and stems of sugar cane are used in Ayurvedic medicine to treat skin and urinary tract infections, as well as for bronchitis, heart conditions, loss of milk production, cough, anaemia, constipation as well as general debility. Some texts advise its use for jaundice and low blood pressure.
A very surprising use of sugar is for removing body hair. A warm paste of sugar, water and lemon juice is applied to the skin. Strips of cloth are then pressed over the paste and are then quickly torn off, taking the hair with them. Enthusiasts claim that this procedure becomes less painful with time. The practice of sugaring may date to ancient times in South Asia.
Sugar is also used to exfoliate skin and in soap-making. It has been claimed that application of sugar cane extracts can benefit the skin, but there is no evidence for this.
In Indian Literature
Indian literature abounds in references to the sugarcane: early Tamil literature describes sugarcane along the banks of the River Kaveri, and indeed sugarcane was usually cultivated in river valleys. Early Indian kings set aside land for pleasure gardens, groves and public parks, and gardens were attached to palaces and grand mansions. The Kamasutra, an early erotic treatise written by Vatsyayana (c. 2nd century AD – c.4th century AD), recommended that a cultivated and wealthy man should surround his house with a garden.
The garden would be under the care of his wife who would dictate the layout of the garden and its planting, while the physical labour was left to professional gardeners. The Kamasutra spoke of pleasure gardens and practical gardens and was specific about what should be planted in the gardens. The practical garden had to include beds of green vegetables, sugarcane, fig trees, mustard, parsley and fennel. The great goddess Kamakshi of Tamil Nadu is portrayed in art holding in her four hands lotus blossom, sugar cane stalks, elephant goad and noose.
Chocolates have been found good for health in moderation. They contain cocoa which is storehouse of thousands of chemicals which are good for human health.
It contains organic chemicals called poly-phenols. These chemicals have been proven to reduce the bad LDL Cholesterol and boosts HDL Cholesterol. This is good for our heart and arteries.
Cocoa
The benefits of these poly-phenols do not stop here. They are very active compounds and catch the free radicals which are very harmful to our body. Free radicals are atoms, compounds which have free unpaired electrons on them and are very reactive and can oxidize many useful compounds in the body and cause diseases like cancer, Alzheimer and other deadly diseases. These phenols render them ineffective and harmless.
Chocolate Goodies
Similarly chocolates contain a chemical called “Anadamide” which boost the mood and removes the gloominess. The name is derived from the Sanskrit word “Ananda” which means bliss.
Chocolate acts as a stimulant. It contains two compounds namely Caffeine and Theobromine which are stimulants. They also contain poly-phenols a class of chemicals called Catechins. These compounds help in reducing the risk of stroke in humans.
It contains Cortisol a chemical which boost the morale and reduces the stress levels. 1.5 ounces (42 grams) of chocolate per day for two weeks have been found to do the trick.
But chocolates have a downside to health. They contain a lot of sugar which is bad for health. Many other foods also contain many of these useful compounds but not as many are present in this single packaged. So in moderation chocolates are good for health.
Every living things requires energy to be alive. Our bodies continuously spend energy to do work. Food which consists of carbohydrates, Oils and Fats, Proteins are primarily food classes. There are other categories of food like fruits and vegetables which provide micronutrients like vitamins and minerals. All of these are required for a normal body to be healthy.
When these items are available, human beings evolved recipes to make the food more tastier and delicious. Different regions of the world have produced different kinds of categories depending on the ingredients available there.
Those recipes are even better which contains maximum nutrients. These are wholesome foods. One such recipe is Ashure or Noah’s Pudding. It has its origin in Turkey. Noah’s name has a story related to it. It is said when Noah’s ship landed with survivors they didn’t have much left. They had some grains like whole wheat, chickpeas, and the like.
The recipe consists of boiling the whole wheat and keep it submerged in the boiled water. Wheat is rich in carbohydrate, minerals and vitamins, Legumes which are rich in proteins are soaked and then boiled. These are then mixed with the boiled wheat in water. A thick pudding results, sweetener like sugar or jaggery is added and then dry fruits and nuts are added. The finishing is also done by topping with dry nuts, coconut powder etc.
The ingredients like legumes and dry fruits and nuts can very depending upon the availability.
This dish is a specialty during Muharram and totally vegan. This pudding is distributed in the community and is considered auspicious.
Many videos are available on the YouTube for preparing this recipe. It is very nutritious.
Rice is the staple diet of majority of world’s population. Asian people mostly eat rice with vegetables and lentils. Annapurna is the Hindu god of rice. Her name comes from the Sanskrit word for rice, “anna”. She is often depicted with a rice spoon in her hand.
What is the rice? It’s white part is the carbohydrates: precursor of sugar of the energy. The colour of rice comes from its outer shell or ‘bran’ which holds much of its nutritional value. It’s the bran or the coating which contains minerals and other micronutrients.
When rice is processed (milled) much of the nutritional value is lost when the bran is removed. The result is pure white rice which is high in energy(starch) and low in micronutrients. Polished rice are not good for the diabetic people.
Because milled rice has lots of energy but few vitamins and minerals, it must be eaten with other foods to get a proper people balanced diet.