Microbes Rule Our World

There are trillions of microbes which inhabit an adult body. Looking at the sheer numbers, one may think that all these microbes are responsible for the ailments only. But this is not true. On the contrary, microbes are much more our friends than our enemies. Microbes run this world despite their infinitely small size. Their success lies in the sheer numbers and ability to adapt to the changing conditions. Following is the list of some species of the microbes that make our lives better:

Bacillus thuringiensis: A common soil bacterium that is a natural pest-killer in gardens and on crops.

Arbuscular mycorrhizas: It is a fungus living in the soil that helps crops take up nutrients from the soil.

Saccharomyces cerevisiae: Baker’s yeast that makes bread rise by generating carbon dioxide.

Escherichia coli It is one of many kinds of microbes that live in your digestive system to help you digest your food every day.

Streptomyces: Bacteria in soil that makes an antibiotic used to treat infections.

Pseudomonas putida:  It is one of many microbes that clean wastes from sewage water at water treatment plants.

Lactobacillus acidophilus: One of the bacteria that turn milk into yogurt.

There are many other important jobs microbes do. They are used to make medicine. They break down the oil from oil spills which otherwise can pollute the sea and cause havoc to the aquatic life . They make about half of the oxygen we breathe by breaking the water molecules into respective components hydrogen and oxygen. They are the foundation of the food chain that feeds all living things on earth.

We’ve been using microbes for thousands of years to make products we need and enjoy. For example, you can thank fungi for the cheese on your cheeseburger and yeast for your bun. Cheese and bread are two microbe-made foods people have been enjoying since time began.

Over the past 50 years, we’ve begun using microbes to do all kinds of new work for us. Here are some examples of microbes at work in pollution control and medicine.

In pollution control, researchers are using bacteria that eat methane gas to clean up hazardous waste dumps and landfills. These methane-eating bacteria make an enzyme that can break down more than 250 pollutants into harmless cells. By piping methane into the soil, researchers can increase growth of the bacteria that normally live in the polluted soil. More bacteria means faster pollution break up. Also, bacteria is being used as one of the tools to clean up oil spills. These bacteria eat the oil, turning it into carbon dioxide and other harmless by-products.

Fungi and bacteria produce antibiotics such as penicillin and tetracycline . These are medicines we use to fight off harmful bacteria that cause sore throats, ear infections, diarrhea and other discomforts. Scientists have changed the genetic material of bacteria and yeasts to turn them into medicine. They inject genes for medicines they want to make into the microbe cells, as if adding new building information to the microbe’s cell DNA. The scientists then grow the microbes in huge containers called fermenters where they reproduce into billions, all making new medicines.

Simply Mind Boggling

Scientists speculate that all the fundamental particles were created from the energy immediately after the Big Bang event in which Universe was formed. Then these atoms combined in different permutations and combinations and molecules were born. Context of immediately in the cosmic events is not similar to the usual terms with which define our world. It may be millions of years.

Earth was formed but its climate was not like the present day. There was no life except one algae namely “Blue Algae” known in the scientific language as “Cyanobacteria” where “Cyano” stands for blue color. It thrived in the water which occupied 70% surface of the Earth. All around in the atmosphere was carbondioxide and metals existed in the solution form because there was no oxygen to react with them and precipitate them as ores. Iron was the most abundant of them. So this was the scene about 3.5 billions of years ago.

How did these small living beings sustain themselves? Where from did they get the energy? .

They developed the photosynthesis and harvested the energy of Sun. They also did much of the chemistry which resulted in critically changing the composition of gases in the atmosphere. They learned to break the water molecules into hydrogen and oxygen. They then used the hydrogen along with carbon dioxide to make carbohydrates which are the store house of energy. The oxygen gas which was generated was very reactive and reacted with the metal ions especially iron species and got fixed up and ores were formed. This went on for millions of years. Iron acted as a perfect sink for oxygen which was poison for these bacteria themselves because they thrived in the anaerobic conditions.

But a stage reached when no more free iron ions were available. So the concentration of oxygen began building up in the atmosphere and setting a stage in which the new species of life which use oxygen for breathing to evolve. The life started in the real earnest. The oxygen content stabilized at about 20% by volume in the air. Carbon dioxide has very small percentage. So these humble microbes were responsible for the life as we see today on this Earth.

The algae learned to live with the existing conditions.

How big is the cyanobacteria? It has been estimated that its diameter is about 2 microns if we consider it as a sphere which it is not. But for the sake of simplicity and bring home the point as is done in all the scientific inquiry let us assume that. Such a small size !! But is it really small in comparison to the smaller things nature can go to. Let us compare it to the size of carbon atom. If we calculate the volume of bacteria and volume of carbon atom, and calculate how many atoms of carbon can fit into the bacteria, you shall be surprised that a mind boggling 1000000000000 atoms is the answer. You are in for more surprise if you go down to fundamental particles like electrons and leptons.

So this is the scale at which the machinery of the Nature works. On one side are the atomic sized particles and on the other are gigantic stars. But one thing is sure that at the base of everything are the fundamental particles. It is also a fact that things behave very differently on the different scale levels. Electrons can behave as particles under one set of conditions and as a wave in the diffraction experiments. Or they may be behaving as they are but with our existing knowledge  we try to explain the things the way which give reasonable answers.

So let us salute to the “Cyanobacteria” to create favorable conditions for the existing worlds to forms and initiation of the diverse kinds of species on this Earth.